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End Road, London, El 4NS, England 
8 Faculty of Mathematics, Open University, Milton Keynes, MK7 6AA, England 

Received 22 May 1981 

Abstract. The primitive semiclassical (EBK) theory of bound states is applied to finite 
non-relativistic systems with a discrete symmetry, particularly systems of identical particles. 
The symmetry properties of invariant tori are obtained, and illustrated for simple models 
with a pair of identical particles, each with one freedom. Examples without and with 
interaction between the particles, and with vibration and rotation are all considered. 
Particular care has to be taken with interacting particles that rotate around a ring. 

1. Introduction 

In recent years there has been a considerable development of the non-relativistic 
semiclassical theory of bound states, partly due to advances in classical dynamics, and 
stimulated by experiments on atoms and molecules of high quantum number. Systems 
of identical particles show the contrast between classical and quantum mechanics 
particularly clearly, so their semiclassical mechanics requires special treatment. 

A proper treatment of identical particles and exchange is needed for a full 
semiclassical theory of the helium atom. Without this treatment, it is not possible to 
distinguish between singlet and triplet states, the principal failing of an earlier 
independent-particle model (Leopold and Percivall980). However the helium atom is 
complicated, so this paper deals with relatively simple models, with a view to later 
extension to helium and other systems. 

We concentrate on the problem of bound states and energy spectra of non- 
relativistic systems without spin, treating them as examples of systems where dynamics 
is invariant under a discrete symmetry group. The simple case of two identical particles 
of one freedom is treated in detail to illustrate the major features of more Complicated 
systems. 

We use the zero-order semiclassical theory of Einstein, Brillouin and Keller (EBK) 
and Maslov, that relates the bound states of quantum mechanics to the invariant tori of 
classical mechanics using quantised action integrals and Maslov indices (Maslov 1972). 
It is the modern corrected version of Bohr-Sommerfeld quantisation and is described 
with the notation of this paper in a review (Percival 1977, denoted I). 
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In § 2 we introduce the relevant parts of the classical dynamics of systems with many 
degrees of freedom, in particular the theory of invariant tori. These are then classified 
for systems with a discrete symmetry group. 

In 9 3 we give a brief account of the canonical action and Maslov indices of these 
systems. Greater detail is provided by I. In 0 4 we treat some very simple systems of 
identical particles in detail. Not all of these systems are bound. It is shown that the 
interaction between particles introduces new types of motion for which the symmetry 
properties are different than for non-interacting particles. 

Section 5 contains the theory of two free particles on a ring, which presents some 
special problems. In § 6 the particles are allowed to interact, so that we have a simple 
model of the hindered rotation of two identical particles. The semiclassical theory with 
sinusoidal interaction is treated in detail semiclassically and quantally. As expected, the 
symmetry classification agrees for the two treatments, but its subtlety was not expected. 
The semiclassical energy levels are in reasonable agreement except near the separatrix, 
where uniformisation methods would be needed (Berry and Mount 1972, Child 1974). 
When the particles rotate relative to one another the simple semiclassical theory gives 
degenerate states, whose degeneracy is broken in quantum mechanics by barrier 
penetration. This also requires uniformisation for a semiclassical treatment. 

As discussed in detail in I, and briefly in § 2, bounded classical motion can be regular 
or irregular, and for most systems of more than one freedom both are significant. We 
have considered only the regular motion. The semiclassical theory of irregular motion 
has recently been treated using periodic orbits instead of invariant tori by Berry (1981) 
and Gutzwiller (1980). 

We do not yet know how to deal with discrete symmetries for irregular motion. 

2. Discrete symmetry of classical motion 

The classical state of a conservative system of one freedom with coordinate q and 
momentum p is represented by a phase point X = (4, p )  in the two-dimensional phase 
space. If for a particular motion the initial state of the system at t = 0 is Xo = (so, p o )  
and 

X ( t )  = (401, d t ) )  (X(0 )  = X O )  (2.1) 
represents the subsequent motion, then the function X ( t )  may be considered as a 
parametric representation of the phase curve of the motion with the time t as the 
parameter. Clearly (q ( t ) ,  p ( t ) )  must be solutions of Hamilton's equations of motion. 

We denote by U(T) the evolution operator that turns a state at time c into the state at 
time t + 7, so that for the above motion 

U ( ? ) X ( f )  = X ( t + 7 )  (2.2) 
and in general U ( t ) X O  represents the motion with X o  as initial condition, or the phase 
curve through X o .  

Almost 'all the phase curves of bound conservative systems of one freedom are 
closed, and in the EBK theory of semiclassical quantisation a countable set of these 
closed phase curves correspond to the stationary quantal states as discussed in § 3. 

The phase curve of a separable bound system of two degrees of freedom is not 
normally closed, and does not correspond to a quantal state. However, usually each 
phase curve occupies a two-dimensional region of the four-dimensional phase space, 
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known because of its shape as an invariant torus, and a countable set of these invariant 
tori do correspond to the quantal states. 

If ql, 42 are separation coordinates and p i ,  p 2  their conjugate momenta, then 

x (xi, xz) E (41, 42, p i ,  p 2 )  (2.3) 

is a phase point, representing a classical state of the system. X l  and X 2  represent the 
states of subsystems, at least formally. Evidently X i  and X 2  lie on phase curves of the 
subsystems if and only if X lies on an invariant torus of the whole system. The torus is a 
direct product of the invariant curves in a topological sense. Almost all the phase space 
is occupied by invariant tori. 

For non-integrable systems some of the phase space may be occupied by invariant 
tori, though not always. The regions of phase space so occupied are known as regular 
regions (I) in contrast to the remaining irregular regions where the motion is chaotic and 
we do not attempt to quantise. The invariant tori of non-integrable systems have a 
similar shape to those of integrable systems, but they are not related to any phase curves 
of separated systems. The generalisation of invariant tori to systems of N freedoms is 
not difficult. 

For a system of one freedom, if X o  is any point on a closed phase curve, then the 
entire phase curve is traced out by the motion with X o  as initial condition. Thus the 
invariant curve is defined uniquely by any phase point on it. 

For systems of more freedom, a phase curve cannot occupy the whole of an invariant 
torus, as they are of different dimension, but normally a phase curve that lies in a torus 
approaches arbitrarily close to any point of it, an ergodic property. If this is true for any 
phase curve of an invariant torus, it holds for all of them and the torus is the closure of 
any one of its phase curves. Such a torus is defined uniquely by any one of its phase 
points and is known as a proper torus. For most systems almost all invariant tori are 
proper tori. 

We can use this property to classify the proper tori of a system with a symmetric 
Hamiltonian H ( X ) .  Suppose the Hamiltonian is unchanged by a discrete group G of M 
transformations gi of the phase points. If giX is the transformation of the phase point X ,  
then we have 

H(giX) = H ( X )  (i = 1,. . . , M ) .  (2.4) 

For if G is the permutation group of two identical particles, then it has only two 
elements, the identity, and the exchange operator e12 that interchanges the coordinates 
and momenta of the two particles. In that case 

(2.5) 

and for the particles to be identical the Hamiltonian must be invariant under this 
exchange. 

But this is a very special case. In general if tA is an invariant torus of the system with 
Hamiltonian (2.4), then we write giTA for the torus made up of all the phase points gJ 
with X in TA. From its definition giTA is congruent to TA and we would expect it to be 
an invariant torus, as we now show. 

If X o  is in giTA, then gf'Xo is in TA, and since TA is invariant U ( t ) g f l X o  is in TA. 
But the Hamiltonian is invariant under the transformation g f ' ,  so the evolution 
operator U(t )  is also invariant under g;'. It follows that for all X, gi and t 

e d X 1 ,  X Z )  = (XZ,  X I )  

U(t)gi 'X = gT1 U( t )X.  (2.6) 



808 

Thus g;lU(t)Xo is in TA and U ( t ) X O  is in gjTA, given our initial assumption. This 
shows that the phase curve through any point of gjTA lies in giTA, which is therefore an 
invariant torus. The analogy with the stationary states of a quantal system with a 
discrete symmetry is clear. 

The congruent invariant torus giTA may or may not be the same as TA. The group 
elements that leave an invariant torus TA unchanged form a subgroup G' of G whose M' 
elements we denote by gj .  The remaining elements of G produce distinct invariant tori 
congruent to TA, making M/M' distinct tori altogether. Such sets of congruent tori are 
used in the semiclassical quantisation of systems with discrete symmetry. The intrinsic 
properties of all the congruent tori are the same, as we now demonstrate for action 
integrals. 

Consider any closed curve (e, which lies in the invariant torus TA and which need 
not have any connection with motion on the torus. Suppose that it is represented 
parametrically by the function 

X ( S )  = ( d s ) ,  P b ) )  ( O s s s l ) .  (2.7) 

Note that s ranges over the unit interval. This corresponds to a closed curve CeB which 
lies in the invariant torus TB = giTa and is represented parametrically by the function 

giX(s) = (giq(s), g ip(s ) )  ( O s s s l ) .  (2.8) 

J G Leopold, I C Percival and D Richards 

The action integral I(%'B) for the curve (eB is defined by 

Now consider a torus TA that is invariant under the evolution U ( t )  and the elements 
gi of a discrete symmetry group G. Let X o  be a phase point of TA and gi an element of G 
of order R, so that g: is the identity. 

Then the set of points 

g y  = X' ( r = O ,  1 , .  . . , R -1) (2.10) 

lie on TA and are invariant under the symmetry operation gi. 
For this case first consider a curve go joining X o  and X I ,  which lies in the invariant 

torus TA and which need not have any connection with motion on the torus. The curve 
90 is clearly not closed, but we shall soon show how to construct a closed curve from it. 

(2.11) 

Suppose kao is represented parametrically by the function 

Y ( s )  (0 s s s R-', Y ( 0 )  = X o ,  Y(R- ' )  = X I ) .  

Note that s ranges over the interval [0, R-'I. 

represented parametrically by the function 
Then for every integer r with 0 s r s R - 1 we can define a curve gr which is 

g j Y ( s )  (r /R s s G ( r  + l ) /R) .  (2 .12 )  
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The curve 9, has end points X' and Xr+', where XR = X o ,  so if we define the function 

X ( s )  = gjY(s) ( r , /RSsS( r+ l ) /R , r=O,  1,. . . , R - l ) ,  (2.13) 

then the values of s in [0,1] define the closed curve % obtained by joining all R of the 9, 
together in a necklace, as illustrated in figure 1. 

Figure 1. Phase points and phase curves on a symmetric invariant torus. 

The canonical action for the closed curve % is given by 

zRI (90) .  (2.14) 

The action integral from Xo to X' = g,Xo is R-' times a canonical action for a closed 
curve on the torus. Since the canonical action for closed curves is constrained by 
quantisation conditions, this puts constraints on the action integrals between equivalent 
points on a symmetric torus. 

The exchange symmetry of two identical particles is a particularly simple case. If T A  
is an invariant torus of the two-particle system and eI2TA = TA, then T A  is named an 
exchange torus. 

If TB is a proper torus of the system, but is not an exchange torus, then TB and 
Tc = e12TB are distinct tori congruent under exchange. 

For an exchange torus the action for a curve between two exchange points X and 
e12X is one half of a canonical action on the torus, and will be named a semi-action. 
Similarly the Maslov index will be named a semi-index. 

3. Canonical action and Maslov index 

We illustrate the EBK theory by the example of the oscillator, following I. The theory is 
based on the properties of those action functions that are solutions of the time- 
independent Hamilton-Jacobi (HJ) equation, supplemented by the Maslov index 
function. This index function depends on the topology of the motion and accounts for 
the behaviour of the system at turning points. 
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Consider a one-dimensional oscillator with Hamiltonian H(q, p). To fix ideas we 

(3 .1)  

The motion may be represented by a curve in phase space like that illustrated in figure 2. 

can suppose that H(4, p) has the form 

H(q,  P) = V(4)  + p2/2m. 

c f P  

A B 

2 
D 

Figure 2. Phase space diagram of an oscillator. 

The equations of motion in phase space are Hamilton’s equations 

They implicitly define p as a two-valued function of q. The two values lie on different 
sheets analogous to the Riemann sheets of complex variable theory. They are joined at 
the turning points A and B of the phase curve, which we name the q-turning points. At 
these points p is a singular function of 4 and dp/dq becomes infinite. 

The points X = ( q , p )  on the phase curve are also two-valued functions of q. 
However, we may also consider the points X on the phase curve as functions of p, and 
these are also two-valued. The corresponding p-sheets are joined at the p-turning 
points C and D, where 4 is a singular function of p and dq/dp becomes infinite. 

In q-representation the phase curve may be considered as the graph of p as a 
two-valued function of 4, with ACB and ADB as the two sheets of this function. In 
p-representation the phase curve is the graph of 4 as a function of p, with two sheets 
CAD and CBD. 

In q-representation the time-independent HJ equation for the action function S ( q )  is 

H(q, dS/dq) -E = 0, (3.3) 

where E is the energy. In the language of the textbooks, S ( q )  is the characteristic 
function. For a given energy E, a solution of the HJ equation (3.3) defines part of a phase 
curve, made up of points (q, dS/dq). But the equation can only be used to define the 
q-sheet, between the turning points A and B. 

By the theory of canonical transformations the action function s(p)  in momentum 
representation, defined on the phase curve as 

satisfies the HJ equation 

H(-dS/dp, p )  -E = 0 (3.5) 
everywhere on ACB except the point C. However, this equation may be used to 
continue s ( p )  into the complete p-sheet CBD, past the turning point at B, and the 
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relation (3.4) can then be used to define S ( q )  in the segment BD of the second q-sheet. 
Continuation around the phase curve can be completed by successive transformations 
between q- and p-representation. 

It is often convenient to use the point X = ( q , p )  on the phase curve as the 
independent variable, so that 

where the suffixes q and p are not variables but labels for the representations. The 
phase points distinguish automatically between the sheets. 

When the phase point X passes once around the phase curve in a negative 
(clockwise) sense, then either action function S,(X) or Sp(X) gains an increment [SI .  
We use this to define the action integral or canonical action 

' f  1 
I = - [ S ] = -  p dq. 27r 27r (3.7) 

For semiclassical quantisation the canonical action is not enough. We also need the 
Maslov index. This is obtained from the index function, which keeps a record of the 
singularities. Like the action function, the index function u,(X) or crP(X) depends on 
the representation, and is many-valued. It is defined up to an additive integer constant 
by the properties 

( 3 . 8 ~ )  

( 3 . 8 b )  

( 3 . 8 ~ )  

a,(X) is an integer constant on any q-sheet, 

aP(X) is an integer constant on any p-sheet, 

UP(X> = U, (XI -sgn(dp/dq), 
where sgn(dp/dq) is the sign of the slope of the phase curve at the point X. 

We define the canonical Maslov index a in terms of u(X) by the relation 

ff = [ U ] / 2  (3.9) 
where [ U ]  is the increment of either U, or U, in one clockwise cycle of the phase curve. 
Using these relations, we find that for the oscillator of figure 2, a = 2 and this is true for 
any oscillator. However for rotational motion there are no q-turning points and a = 0. 

In q-representation the EBK semiclassical wavefunction on the phase curve is 
defined by the equation 

(3.10) P) = &JX) =B,(X) exP[iTq(X)I, 
where the phase function is 

T(X)  = S(X)/h-cr(X)7r/4 (3.11) 

and B,(X) is a positive amplitude factor. 
The wavefunction for a particular value of 4 is given by 

(3 .12 )  

where the sum is taken over those values of p for which (q, p) lies on the phase curve. If 
there is no such value, so that the motion never reaches q, then the sum is zero. This 
wavefunction satisfies the Schrodinger equation to zero order in h except for the 
q-turning points. These are treated by transforming to p-representation, by analogy 
with the classical theory of 0 3. The details are given in I. 
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The function qq(X) is not single-valued on the phase curve, but the wavefunction 
(3.10) is single-valued, so the increment in q q ( X )  around the phase curve must be a 
multiple of 27r, that is 

(3.13) [77q(X)I = 2.rm (n  = 0, *1, * 2 , .  . .) 
or 

I = ( n  + LY/4)h (n = 0, * l ,  * 2 , .  . .) (3.14) 
where 

a = 0 for rotation and LY = 2 for vibration. (3.15) 

This is the EBK quantisation condition for a single invariant torus of a system with one 
freedom. 

For a system of N freedoms there is one such quantisation condition for each of the 
canonical actions I k  belonging to each of N independent closed curves qk on the 
invariant tori. 

For systems with discrete symmetry the quantisation depends on the congruent 
invariant tori. Because they are congruent their quantisation conditions are identical 
and their semiclassical wavefunctions degenerate. If the number of congruent tori is 
equal to the number of elements of the symmetry group, then the semiclassical theory is 
formally no different from the quantum theory, symmetric wavefunctions being formed 
from linear combinations of the semiclassical wavefunctions of the congruent tori. 
There is nothing new for the primitive semiclassical theory. 

However, if the number of congruent tori is less than this, the tori themselves 
possess a discrete symmetry and there are new 
examples in the next sections. 

4. Semiclassical exchange for simple systems 

features which are illustrated by 

We investigate some very simple systems of two iLsntica1 particles with one freedom 
each. All of them are separable, but not all of them are bound, so instead of tori we 
sometimes have invariant planes or cylinders. 

Our first system S1 consists of two identical non-interacting free particles 1 and 2, 
each moving in one space dimension, labelled qj, The momentum Pi of each particle is 
conserved, and the action function s(pl,  p 2 )  is singular. In q-representation the action 
function is 

S(q1, qZ)=plql+PZq2, (4.1) 

corresponding to the invariant plane p1 = P1,  p 2  = P2 in the four-dimensional phase 
space. There are no turning points so the index function can be taken as zero. 

A phase point X = (q l ,  q2, P1, P2) is exchange equivalent to the point 

el& = (q2qlP~P1). (4.2) 

If P1 # P2 this lies on a different invariant plane. These classically distinct invariant 
planes are indistinguishable in quantum and semiclassical mechanics. The resulting 
degeneracy is removed in semiclassical mechanics as it is in quantum mechanics by the 
condition 

(4.3) +(SI, q 2 )  = *e12+(q1, 42) = * W Z ,  411, 
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where B is a normalising factor. However for PI = P2 there is a single invariant plane 
and S(ql,q2)=S(qz,ql). The fermion state does not exist, leading to the Pauli 
exclusion principle for this degenerate case. For this example the probability that 
P1 = P2 is negligible, but this is not so for the next example. 

The system S2 consists of two non-interacting particles in a potential well V(4). In 
that case the phase curve for an individual particle has two q-sheets, labelled U for the 
upper sheet and 1 for the lower sheet. Following the prescription of § 2, the action 
functions for the particle 1 in q-representation are 

41 

dq (El - V(q))1/2 (4- 41 4+) (4.5) .lq+ Sdq1) = S u ( 4 t ) -  (2m)1/2 

and the index functions are 

C+u(ql) = 0, d 4 1 )  = 2, (4.6) 

where 4* are the turning points. Taking into account the discontinuity in a(q1) at 4-, 
the canonical action and index are 

The single-particle semiclassical wavefunction can be constructed only when the 
quantisation condition 

I1 = (n1 +4)h (4.8) 

is satisfied. It is the normalised sum of the wavefunctions for the upper and lower sheets 

$l(ql) = $ul(ql) + $l1(41) = &l(ql) exp[im(qdl. (4.9) 

For the two particles, the separated phase curves of the individual particles may or 
may not have the same canonical action. If they do not, I1 f I2 and the exchange 
operator produces a distinct congruent invariant torus. The symmetric and antisym- 
metric wavefunctions are formed from combinations of the semiclassical wavefunctions 
of the two congruent tori in the usual way. 

If II = 12, then we have an exchange torus. This is represented in figure 3 in the 
separated phase spaces of the individual particles and on the el, e2 plane of the angle 
variables. In this plane the torus is represented repeatedly by a square mesh of side 211. 
The illustrated phase points A and B are exchange equivalent. The points B and B’ are 
equivalent both classically and semiclassically. It can be seen from the figure that the 
operation e12 of exchange corresponds to a reflection in any of the diagonal dotted lines 
of figure 3. Illustrated also is the curve 90 joining A to B and the curve elz%, = g1 
joining B to A. The combined closed curve V can be deformed to a point, so the action 
integrals 

(4.10) I ( % )  = I ( 9 d  = 0, 
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i,, 
( b l  

Figure 3. An exchange torus for two non-interacting oscillators: ( a )  representation in phase 
space, ( b )  representation in angle space. 

where we have used the relation (2.14) to show that the semi-action I($&) is zero. 
Similarly the semi-index must be zero. 

But when the semi-action and the semi-index are zero the semiclassical wavefunc- 
tion is unchanged by the exchange e12 and cannot represent two fermions. This is the 
semiclassical statement of the exclusion principle for two particles. 

For the curve Bb joining A to B' we come to the same conclusion by a slightly 
different route. The curve 9; = elz9d;, joins B' to A', so % joins A to A'. The action 
I ( % )  is not zero, but we see by inspection that I ( % )  = I l  + I z  = 21, because the separated 
phase curves are identical. Consequently the semi-action I(@,) is equal to Il and must 
be a multiple of 27~. The semiclassical wavefunction is unchanged by exchange and 
fermion states are excluded. 

It might be thought that an exchange torus could never represent a state of two 
fermions, but that is not so if the particles can interact. 

We give an example S3 in which they are bound by the potential 

w(qi, q 2 ) = b ( q i  +4d2+ v(I4i-qzl). (4.11) 

This system is separable in centre-of-mass coordinates 

Q = (41 + 42)/2,  4 =41-42* (4.12) 

The centre of mass itself is a linear oscillator and is unaffected by exchange. All the 
properties of exchange appear in the relative coordinate and momentum, whose phase 
space is illustrated in figure 4. 
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Figure 4. Exchange torus for interacting oscillators: ( a )  phase curve for relative coordinate, 
(b)  representation in angle plane. 

The exchange of particles corresponds to a change in the sign of both 4 and its 
conjugate momentum p ,  so the point B on the opposite side of the symmetric phase 
curve is exchange equivalent to A.  All invariant tori are exchange tori. If e , @  are the 
angle variables corresponding to the relative and centre-of-mass motion, and eA, @A 

and OB, OB are the angle variables of the phase points A and B = e l z A  on an exchange 
torus, then 

eB = e A f  T, @E = @A. (4.13) 

As will be seen from inspection of figure 4, the operation of exchange corresponds to 
a translation in the angle plane and not a reflection as in the previous case. As a result of 
the phase curve %, made up of go joining A to B, and 9, = e l z % ,  joining B to A, 
completes a cycle of the torus, and the semi-action is simply half the action integral of 
relative motion. Similarly for the semi-index so the phase 

(4.14) 

(4.15) 

so the phase change under exchange is TY, the sign of the semiclassical wavefunction 
remains the same for v even, and it changes when v is odd. The tori correspond to 
boson and fermion states respectively. This is consistent with the alternation of boson 
and fermion states in quantum theory. 

Notice that in going from non-interacting to interacting particles there is no smooth 
transition in the behaviour under exchange. The changed topology of the motion 
changes the topology of the map from 4, p representation to 8, I representation, so the 
effect of exchange is completely different. This also occurs for the more subtle case of 
two particles on a ring, as in § 5 .  

5. Two free particles on a ring 

In § 4 we dealt with the simplest cases of vibration. In this section we consider two 
identical particles on a ring, the simplest case of rotation. Because of its simplicity it is 
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degenerate, and we can separate in either individual particle or relative motion 
coordinates, leading to different sets of invariant tori in either case. The relative motion 
coordinates lead to special problems that require careful consideration. 

Suppose the ring is circular, and that rpl and c p z  are the angular coordinates of the 
particles. If p1 and p 2  are the conjugate momenta, then the Hamiltonian has the form 

H(401402PlP2) = (wm: + P 3 .  (5.1) 

These are the individual particle coordinates, and because of the especially simple 
form of the Hamiltonian the physical angles cpi are the same as the angle variables 8, and 
their conjugate momenta pi are the action variables lp The angle space (el, 02)  is the 
same as the configuration space (p1, p2). We find it convenient, because of the 
subtleties associated with the change to relative motion coordinates, to consider the 
whole (p1, cpz) plane, so that each configuration is represented any number of times on a 
square mesh of side 2 r  in the (ql, (p2) plane. The points 

( C p l f  2rv1, 402 + 277v2) (5.2) 

are classically equivalent to one another, since they represent the same configuration. 
This also applies to the angle plane. The points 

( V I ,  v2 = 0, *l, 2 , .  . .) 

(el + 2rv1, e2 + 2 7 7 4  (v1 ,v2=0,*1 ,*2 , .  . .) (5.3) 
are classically equivalent as they represent the same point on an invariant torus. For the 
special example of free particles on a ring ( 5 . 2 )  and (5.3) are equivalent, but in general 
they are not, and we need both relations. 

In (ql, (p2) representation the action function for an invariant torus with values of 
the action variables given by I?,  1; is 

(5.4) 
It is this action function that determines the semiclassical phase and thus the 

quantisation of this system. There are no turning points so that the Maslov index is zero, 
and the quantisation gives 4 = njh .  

In figure 5(a) we illustrate the positions cpl and ( p 2  of the two particles on the ring, 
and in 5(6 )  we illustrate the configuration space, which is the same as the angle space. 

S h ,  402) = &l +&z. 

Figure 5. ( a )  Non-interacting particles on a ring and ( b )  the configuration and angle space. 
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The fundamental square OABC of side 21r represents an invariant torus, and is 
repeated over the plane. The origin is at 0. Horizontal or vertical translation by a 
multiple of 21r leaves the classical state unchanged. 

Also illustrated is the fundamental square ODEB for the coordinates 

of relative motion. 
The motion is separable in these coordinates, but the new fundamental square is 

twice as big as the old one. It contains two representations of each configuration instead 
of the standard one. For example F and F’ are in the same fundamental square ODEB 
of relative coordinates, but they represent the same configuration. The same applies to 
the points G’ and G”. They are classically equivalent. For this reason we refer to the 
(cp,  (0) representation as a double representation. Some aspects of this representation 
are considered by Born (1927, p 266). 

We are now ready to consider some of the problems of exchange for this system. 
Two classical states that are obtained from one another by interchanging identical 
particles are said to be exchange equivalent. In our configuration space of figure 5(b)  
the effect of exchange is represented by interchanging cpl and c p 2 ,  or by changing the sign 
of the relative coordinate cp and leaving @ unchanged. This corresponds to reflection in 
a diagonal through the origin, or any parallel diagonal through a point that is classically 
equivalent to the origin. 

In figure 5 ( b )  we have divided the (cp, @) space into a black and white chessboard, 
with four squares of the chessboard in the fundamental square of the (cp,  0) represen- 
tation. Corresponding points in white squares, like F and F’, are classically equivalent, 
as are corresponding points in black squares, like G’ and G”. However the points F and 
G are in different coloured squares and they are exchange equivalent, so all the points 
F, F’, G’, G”, G must be exchange equivalent, and quantally indistinguishable. 

By the periodicity, all white squares are classically equivalent to one another, and so 
are all black squares. In (cp, @) coordinates all points 

(cp  + p r ,  @ + V T )  ( p  + Y even) (5.6) 

are classically equivalent for integer p and Y. All points 

(*cp +pIr, @ + V T )  ( p  + Y even) (5.7) 

like F and G are exchange equivalent, and all black and white chessboard squares are 
exchange equivalent. They are indistinguishable in quantum mechanics. 

We notice that in the angle space (el, e2) we can use relative angle coordinates 
8 = cp, 0 = (0, but these are not standard angle variables, because the fundamental 
square contains two representations of each classical state, which is not normally 
allowed. We refer to them as scaled angle variables. The same difficulty occurs even 
when we introduce interactions and the angle variables (e, 0) are no longer the same as 
the physical angles (cp,  a). 

We now consider the problem of semiclassical quantisation in the double represen- 
tation, and denote the action variables conjugate to (e,@) by (I-, I+), where by the 
Poisson bracket relations for conjugate variables 

I- = p1 - p 2 ,  I+=p1+p2, (5.8) 
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and the Hamiltonian function is 

H(I- ,  I+) = (1/4m)(IZ +I: 1. (5.9) 

When the motion is separated in these coordinates the action function 

S(p, @) = ILcp +I: a (5.10) 

satisfies the HJ equation for fixed values of IL, I:. The invariant torus T(IL,  I: ) with 
this action function is defined by the equations I- = I:, I+ = I: in the (cp, @, I-, I,) 
coordinates of the phase space. The Maslov index is zero. 

For the quantisation conditions we must take care because of the double represen- 
tation of classical states within the fundamental square. In order that the wavefunction 
should be single-valued we have 

gl//(a,@P)=Il(cp+2.rr,a)=gl/(cp,@+2.rr)=Il(cp+rr,@++). (5.11) 

The third equality is a consequence of the double representation. 

conditions 
The definition (5.8) of I- and I+ or the relation (5.11) leads to the quantisation 

I- = n-h, I+ = n+A (n- + n+ even), (5.12) 

where n- and n+ are integers. 
The effect of exchange on the torus is 

and unless I- = n-  = 0 this is a distinct congruent torus. The boson and fermion states 
are formed from the appropriate linear combinations of the wavefunctions formed from 
the congruent tori. For I-  = n- = 0 there is only one exchange torus for each I+ and this 
represents a boson state only. 

6. Two interacting particles on a ring 

We introduce an interaction between the identical particles, so that the Hamiltonian 
now has the form 

where the momenta are denoted p instead of I because they are no longer all action 
variables of the system. This problem has been treated classically by Born (1927, p 
266). The interaction destroys the separability in (cpl, cp2) but retains it in (cp, @). The 
Hamiltonian for relative motion is 

(6.2) 

with V ( q )  even and periodic in cp of period rr and independent of a. 
Unlike the previous examples both rotation and vibration can take place, the former 

when the energy is greater than the maximum of the potential, and the latter when, as 
illustrated in figure 6, it is smaller. The two types of motion are divided by a separatrix 

H-(cp, p - )  = (pV4m) + V(cp), 
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't 

Figure 6. The potential V ( q )  = a( l  -cos 2 q )  and the phase space with phase curves for the 
energies E,  < 2a, E,- > 2a and the separatrix S,. 

in the (cp ,p- )  phase plane. In the neighbourhood of this separatrix the primitive 
semiclassical EBK theory breaks down and uniformisation methods have to be used. 
These methods are clearly important for problems involving exchange, but we do not 
discuss them here. 

We content ourselves with the comparison of the EBK and the exact quantal energy 
levels for a particular case in which the potential is 

V(cp) = f f (1  -cos 2 q?), (6.3) 

where a is a perturbation parameter. 
The potential and phase space are illustrated in figure 6. For any energy E except 2 a  

there are two phase curves, but clearly they have a very different form for vibration and 
rotation. 

(q?, a) are no longer scaled angle variables as they are for the free particles on a ring 
of 3 5 .  In the rotational region (E > 2a), though, the topology of the angle space (e,@) 
is retained in the coordinate space (cp,@) and the identification of classically and 
exchange equivalent points is the same as in 0 5 .  Thus, for rotational motion the effect 
of exchange (equation (5.13)) corresponds to going from an upper rotational curve to its 
respective lower one in figure 6. The quantisation condition (5.12) holds here too, so 
for n,  even, n- is even while for n+ odd, n- is odd. For either even or odd n-  > 0 the 
semiclassical boson and fermion wavefunctions are formed from the appropriate linear 
combinations of the wavefunctions on the two congruent tori. For any value of n-  there 
are two degenerate semiclassical states of [+I and [-I exchange symmetry. [+] and [-I 
denote respectively a symmetrical and an antisymmetrical semiclassical state with 
respect to exchange of identical particles. 
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For the rotational region at a given energy E of the Hamiltonian (6 .2 ) ,  the action 
integral is given by 

d(p (4mE - 8ma sin2 ( P ) ” ~  
1 2n I- = - 

2T b 
Here E > 2 a  and the integral (6.4) is given by 

i6.4) 

(4mE)”2 2T  4(mE)’12 
2.rr lo d(p ( 1  - k2  sin2 (p)l12 = E N ) ,  (6.5) I- = 

7T 

where we have chosen 

k2 = 2 a / E  < 1 (6.6) 

and E ( k )  is a complete elliptic integral of the second kind (Gradshteyn and Ryzhik 
1965). Simple semiclassical quantisation gives 

(6.7) 

and we have a degeneracy in f n -  due to the double valuedness of p - .  For kZ<< 1 
(E >> 2 a )  the system is very near to two free particles on a ring and we have E ( k )  = ~ 1 2 ,  

(6.8) 

I- = [4 (mE)”2 /~ ]E(k )  = n-h ( n -  = 0 ,  1, 2 , .  . .) 

I- = ( 4 m ~ ) ” ~  = n-fi  

and 

E = n? h2/(4m), (6.9) 

The energy levels can be obtained in general by inverting equation (6.7) so as to 
obtain E for a fixed integer value of n - .  

For the vibrational motion the physical angles ((p, ‘P) are not related to angle 
variables in a simple manner. This is similar to the system S3 treated in § 4. Here an 
exchange corresponds to a translation of T in the angle variable 8 as in equation (4.13), 
keeping 0 constant, as for the points A and B in figure 7 ( a ) .  As (p goes to -cp during an 
exchange operation, 8 goes to 8 + .rr (figure 7(6)). Note that here we are concerned with 
translations in the (8, 0) space and not the ((p, ‘P) space. This reflects the equivalence of 
the two wells in our double representation. If for this region we change the coordinate cp 
to ,y = 2(p, the Hamiltonian separates in ,y and ‘P and for the ,y motion it is now 

H, = p ~ / ( 2 m / 2 ) + a ( 1 - - c o s ~ )  (6.10) 

Figure 7. (a) Phase curve for a system of two interacting particles on a ring with vibrational 
motion in the relative angle and (6) the angle plane. An exchange operation is between 
points A and B, with OB = 6, + T.  
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and the theory is identical to that of a vertical pendulum of mass m/2. The x motion is 
quantised in the same manner as in 5 4, equation (4.15), by the quantum number v 
which is distinct from n- and is independent of n+. 

For even and odd v we obtain semiclassical boson and fermion states alternately. 
For the vibrational motion we have E < 2a and we define 

k” = E / 2 a  < 1. (6.11) 

The required action integral is given by 

I, = - dx  (mE - 2ma sin2 ~ / 2 ) ~ ’ ~ .  21T ‘ f  (6.12) 

Putting k” = sin2 q0 and sin Q = sin q0 sin p, we obtain 

= [ 4 ( 2 m a ) 1 / 2 / ~ ] [ E ( k ’ )  - (1 - k ” ) K ( k ’ ) ] ,  (6.13) 

where K ( k ’ )  is a complete elliptic integral of the first kind. For kr2<< 1 (a large, very 
deep well, or E small, very low vibrational states) I, is given approximately by 

I ,  = (2a/m)-1/2E (6.14) 

or the energy by 

E, = (v +9(2a/m)1/2h (v = 0,  1 , 2 , .  * .), (6.15) 

where we have used simple EBK quantisation for vibrational motion. (6.15) gives the 
energy levels of a harmonic oscillator of mass m/2. For higher k” we can approximate 
the elliptic integrals by finite polynomials in k”. 

With this approximation the semiclassical energy levels of the system can be 
obtained by solving equations (6.13) for k” = E/(2a)  with 

(v = 0, 1 , 2 , .  . .). (6.16) 

The classical equivalence puts constraints on the forms of both the semiclassical and 
quantal wavefunctions. For the quantal wavefunction there is no formal distinction 
between rotation and vibration and classical equivalence is valid all through. Because 
of the classical equivalence of the points (Q, CP) and (Q + IT, CP + IT), the separated 
quantal wavefunctions have the form 

*(Q; CP) = +(cp)(21~)-”~ exp(in+@) 

I, = (v +$)h  

= q(q + IT, CP+ IT) = +(q + I T ) ( - I ) ~ + ( ~ I T ) - ” ~  exp(in+CP). (6.17) 

Therefore we have 

+(cp  + IT) = (--1)“+4(40). (6.18) 

The behaviour of +(Q) under translation therefore depends on the parity of the 
‘centre-of-mass’ quantum number n+. This applies to both bosons and fermions. The 
quantal exchange properties do not depend on the parity of n+ but only on the sign 
change in +(Q) going to $(-Q). 
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The quantal wavefunction $(cp) is a solution of the Schriidinger equation 

x + a ( l  -cos 
ti2 d2 

(-G dcp (6.19) 

This has the form of a Mathieu equation 

J l ” (z)  + (a  - 29 cos z)J1(z j = 0, (6.20) 

where 

z=cp+.rr/2, U = ( E  - a)4m/t i2 ,  2q =4ma/h2. (6.21) 

The Mathieu equation (6.20) has four types of periodic solutions (Gradshteyn and 
Ryzhik 1965) ceZr(z), ~ e ~ , + ~ ( z ) ,  C ~ ~ , + ~ ( Z ) ,  s ~ ~ ~ + ~ ( z )  with r = 0, 1, . . . . The solutions 
with even subscript are of period 7r while those of odd subscript are of period 27r. The ce 
solutions are even functions while the se ones are odd. The first four solutions are 
sketched in figure 8 ( a ) .  The eigenvalues of the Mathieu equation (6.20) are denoted a,, 
associated with even solutions, and b,, associated with odd solutions. 

I 
2rr 

I 
0 0 2n 

[ bl 

Figure 8. The potential V (dotted line) and the first four Mathieu functions in z and cp 
representation. Each function is denoted by its name ce, or se, and has aperiod 27r or 71 for 
even and odd r respectively. The signs in the square brackets are the corresponding 
exchange symmetries while a and b denote the eigenvalues. 

The solutions of the Schrodinger equation (6.19) are related to the solutions of the 
Mathieu equation (6.20) in the following way (Gradshteyn and Ryzhik 1965, p 993): 

c e z r ( z )  = (-l)‘cez,(cp), 
~e2~+i(z) = (-1)rse2r+1(cp), ~ e 2 ~ + 2 ( ~ )  = (-- l)‘~e2~+2(cp). (6.22) 

Clearly the 7r/2 shift in z = cp + ~ / 2  leaves the periodicity of the solutions 
unchanged, but for the solutions of period 27r, this shift changes the parity of the 

mI+ 1 ( z  ) = t - 1 Irceir+ 1 (P 1, 
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solutions. The eigenvalues of (6.19) a: and b: relate to those of (6.20) in the following 
way: 

azr = aL, b 2 r + 1 =  aSr+i, ~ 2 ~ + 1 =  b!2r+l, b 2 r + 2 =  b!2r+2. (6.23) 

Table 1. Quantal (EQM) and semiclassical (Esc) energy levels for the system of two 
interacting identical particles on a ring. Espx = 2a is the value of the energy at the classical 
separatrix. The signs in the square brackets are the corresponding exchange symmetries. a, 
and 6, are the corresponding Mathieu eigenvalues. 

EQM Esc 
E,,, v(forE<2a)  

a n, even n, odd n, even n, odd =2a n- (for E > 2a)  

10. 2.171 65[+], a. 

10.288 57[+], a2 

16.898 65[+], a4 

6.377 24[-],62 

13.873 49[-],64 

20.147 42[-1, b6 
21.015 74[+], a6 

2.171 65[+], bl 
6.377 18[-1, a l  

10.290 18[+], b3 
13.848 95[-], a3 
17.117 06[+], 65 
19.161 24[-1, a5 

2.205[+] 

10.332[+] 

17.087[+] 

6.414[-] 

13.9 15[ -1 

19.652[-] 
20. . - _ _ _ - _ _ _ _ - - - _ 

23.276 62[+], 67 
23.466 12[-1, a7 

26.813 06[-], bg 
28.836 47[+], as  

5. 1.515 76[+], a. 
4.404 46[-], b2 
6.929 34[+], 
9.345 35[-], 64 

10.276 16[+], a4 

14.354 96[-], 66 
14.383 40[+], a6 

0.5 0.386 22[+], a. 

1.479 26[-], 62 
1.592 83[+], a2 

4.508 24[-], b4 
4.508 46[+], a4 

9.503 57[-], 6.5 
9.503 57[+], 6.5 

30.888 OS[+], 69 
30.890 06[-1, ag 

4.400 21[-1, a l  

8.875 69[-1, a3 

1.515 86[+], 61 

6.996 52[+], b3 

11.691 61[+], 65 
11.925 94[-1, a5 

20.590[+-] 

23.333[ +-I 

26.820[+-] 

30.888[+-] 

1.5492[+] 

7.018[+] 
4.4425[-] 

10. _ - - _ _ - - - _ _ - _ _ _ _ _ - _ _ _  

11.779[+-] 

14.355[+-] 

17.5 lo[+-] 17.513 54[+], 6 7  

17.515 67[-1, a ,  

0.472 44[+], bl 
0.964 78[-1, a l  

2.761 93[+], 63 
2.769 59[-1, a3 

6.755 21[+], b5 
6.755 21[-1, as  

0.46630[+] 

2.7639[+-] 

4.5085 [ + -1 

6.756[+-] 

0 
1 
2 
3 
4 
5 

6 

7 

8 

9 

0 
1 
2 

5 

6 

7 

0 

2 

3 

4 

5 

6 9.5 04[ + -1 
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From (6.18) we have that the solutions of period ~r are associated with even n+ while 
those of period 21r are associated with odd n+. The functions ce,(cp)=ce,(-cp) are 
symmetric [ + I  while se , (q)  = -se,(-cp) are antisymmetric [ - I  with respect to exchange, 
as can be seen in figure 8(6). Thus, the quantal spectrum and exchange symmetry 
classification for this system can be represented in the following table: 

n+ even n+ odd 

where the inequality continues from line to line and the two columns correspond to 
different n+ parities. The values of the corresponding energies EQM are obtained using 
the second equation in (6.21) where a is replaced by the corresponding a, or b,. 

In table 1 we summarise some of our numerical results for certain a. The 
comparison between the semiclassical and quantal energy levels is not too good in the 
neighbourhood of the classical separatrix, but a clear exchange symmetry matching is 
possible. In the vibrational region (E  < 2a)  the semiclassical spectrum is independent 
of the parity of n+. This corresponds to the degeneracy ~ ~ r [ + ] z b ~ r + l [ + ]  and 
U Z , + I [ - ]  = 6 ~ , + ~ [ - ]  in the quantal spectrum for low r’ and a not too small. In the 
semiclassical rotationafregion for n+ even, n- is even while for n+ odd, n- is odd and 
both [+] and [-3 symmetries occur for any n-. This corresponds to the degeneracy 
a z r [ + ]  = 6 2 r [ - ]  and UZ,+I[-] = 6 z r + 1 [ + ]  in the quantal spectrum for highvaluesof r. The 
semiclassical solution is not valid in the neighbourhood of the separatrix where the 
quantal tunnelling effect destroys the above degeneracy. 

The classical separatrix divides the motion into two distinct regions. A uni- 
formisation procedure can be used to pass smoothly from one region to the other. This 
has not been attempted in this work. The degeneracy displayed by the Mathieu 
functions in the two classical regions preserve the dynamical properties of the system. 
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